Mutant mice with reduced NMDA-NR1 glycine affinity or lack of D-amino acid oxidase function exhibit altered anxiety-like behaviors.

نویسندگان

  • Viviane Labrie
  • Steven J Clapcote
  • John C Roder
چکیده

Several compounds that promote activation of the N-methyl-d-aspartate receptor (NMDAR) glycine site have been proposed as treatments for schizophrenia, but the impact of these putative antipsychotics on anxiety remains unclear. In this study, we employed genetic and pharmacological mouse models of altered NMDAR glycine site function to examine the effects of these proposed treatments in unconditioned tests of anxiety. In the elevated plus-maze, open field, and novel object test, homozygous Grin1(D481N) mutant mice that have a five-fold reduction in NMDAR glycine affinity demonstrated an anxiolytic-like phenotype. In contrast, d-serine, a direct activator of the NMDAR glycine site, and ALX-5407, a glycine transporter-1 (GlyT-1) inhibitor, enhanced anxiety-like behaviors in wild-type and Grin1(D481N) mutant animals. Homozygous Dao1(G181R) mutant mice that lack function of the d-serine catabolic enzyme, d-amino acid oxidase (DAO), displayed an elevation in anxiety. Deficient DAO activity also reversed the anxiolytic effects of diminished NMDAR function in mice carrying both the homozygous Grin1(D481N) and Dao1(G181R) mutation. Thus, a direct agonist of the NMDAR glycine site, a GlyT-1 inhibitor, and suppression of DAO function induced anxiogenic-like behaviors. Consequently, application of these treatments for amelioration of schizophrenic symptoms necessitates caution as an enhancement of comorbid anxiety disorders may result.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for a tetrameric structure of recombinant NMDA receptors.

The amino acids L-glutamate and glycine are essential agonists of the excitatory NMDA receptor, a subtype of the ionotropic glutamate receptor family. The native NMDA receptor is composed of two types of homologous membrane-spanning subunits, NR1 and NR2. Here, the numbers of glycine-binding NR1 and glutamate-binding NR2 subunits in the NMDA receptor hetero-oligomer were determined by coexpress...

متن کامل

Identification of amino acid residues of the NR2A subunit that control glutamate potency in recombinant NR1/NR2A NMDA receptors.

The NMDA type of ligand-gated glutamate receptor requires the presence of both glutamate and glycine for gating. These receptors are hetero-oligomers of NR1 and NR2 subunits. Previously it was thought that the binding sites for glycine and glutamate were formed by residues on the NR1 subunit. Indeed, it has been shown that the effects of glycine are controlled by residues on the NR1 subunit, an...

متن کامل

Subtype-selective antagonism of N-methyl-D-aspartate receptors by felbamate: insights into the mechanism of action.

Felbamate is an anticonvulsant used in the treatment of seizures associated with Lennox-Gastaut syndrome and complex partial seizures that are refractory to other medications. Its unique clinical profile is thought to be due to an interaction with N-methyl-D-aspartate (NMDA) receptors, resulting in decreased excitatory amino acid neurotransmission. To further characterize the interaction betwee...

متن کامل

Functional consequences of reduction in NMDA receptor glycine affinity in mice carrying targeted point mutations in the glycine binding site.

We have used site-directed mutagenesis in conjunction with homologous recombination to generate two mouse lines carrying point mutations in the glycine binding site of the NMDAR1 subunit (Grin1). Glycine concentration-response curves from acutely dissociated hippocampal neurons revealed a 5- and 86-fold reduction in receptor glycine affinity in mice carrying Grin1(D481N) and Grin1(K483Q) mutati...

متن کامل

Modulation of NMDA receptor properties and synaptic transmission by the NR3A subunit in mouse hippocampal and cerebrocortical neurons.

Expression of the NR3A subunit with NR1/NR2 in Xenopus oocytes or mammalian cell lines leads to a reduction in N-methyl-d-aspartate (NMDA)-induced currents and decreased Mg(2+) sensitivity and Ca(2+) permeability compared with NR1/NR2 receptors. Consistent with these findings, neurons from NR3A knockout (KO) mice exhibit enhanced NMDA-induced currents. Recombinant NR3A can also form excitatory ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pharmacology, biochemistry, and behavior

دوره 91 4  شماره 

صفحات  -

تاریخ انتشار 2009